

Molecular risk stratification is independent of EGFR mutation status in identifying early-stage **NSCLC** patients at risk for recurrence and likely to benefit from adjuvant chemotherapy

¹Yale University, Department of Surgery, ²University of California San Francisco, Department of Medicine, ⁴University of California San Francisco, Department of Pathology

Background

Adjuvant chemotherapy recommendations for early-stage non-small-cell lung cancer (NSCLC) depend on identification of patients at high risk of recurrence. **Current National Comprehensive Cancer Network (NCCN) guidelines, for example,** recommend using adjuvant platinum-doublet chemotherapy for stage IB-IIA patients only when considered by their doctors to be at "high risk," although only possible *examples* of *non-validated* clinicopathologic high-risk criteria are provided.¹ **Recently early results from the ADAURA trial demonstrated a clear disease-free** survival benefit in patients with stage II and IIIA EGFR mutant tumors treated with

adjuvant osimertinib.²

An internationally validated, 14-gene expression assay has been shown to better stratify survival based on molecular risk in non-squamous NSCLC than either conventional TNM staging or NCCN high-risk criteria.³⁻⁶ Furthermore, we have previously shown in 100 prospectively studied early-stage patients⁷ that molecular high-risk was predictive of markedly improved disease-free survival with adjuvant chemotherapy.

The relationship between 14-gene molecular risk stratification and EGFR mutation status has not yet been reported.

Methods

- Single institution study of 250 consecutive patients with stage I-IIA non-squamous NSCLC, following **R0** resection
- Real-time tumor molecular testing by the 14-gene assay was performed in a CLIA lab to inform adjuvant chemotherapy decisions postoperatively. The test identifies patients at low-, intermediate- or high-risk of death within 5 years of surgery. For this study, intermediate- and high-risk patients were combined as one high-risk group.
- The 14-Gene Assay utilizes quantitative PCR analysis of formalin-fixed, paraffin-embedded tissues and determines the expression levels of 11 cancer-related target genes (BAG1, BRCA1, CDC6, CDK2AP1, ERBB3, FUT3, IL11, LCK, RND3, SH3BGR, and WNT3A) and three reference genes (ESD, TBP, YAP1). An algorithm is then used to generate a low-, intermediate- or high-risk designation.
- EGFR mutation analysis by NGS was available on 150 patients.
- Platinum-doublet adjuvant chemotherapy was recommended for molecular high-risk patients without consideration of EGFR mutation. None of the molecular low-risk patients received adjuvant chemotherapy.
- **Disease Free Survival (DFS) and Freedom From Recurrence (FFR) were estimated using Kaplan-Meier** analysis and compared using a log-rank test.

Gavitt A. Woodard, MD¹; Johannes R. Kratz, MD²; Greg Haro, MD²; Matthew A. Gubens, MD, MS³; Collin M. Blakely, MD, PhD³; Kirk D. Jones, MD⁴; Michael J. Mann, MD²; David M. Jablons, MD²

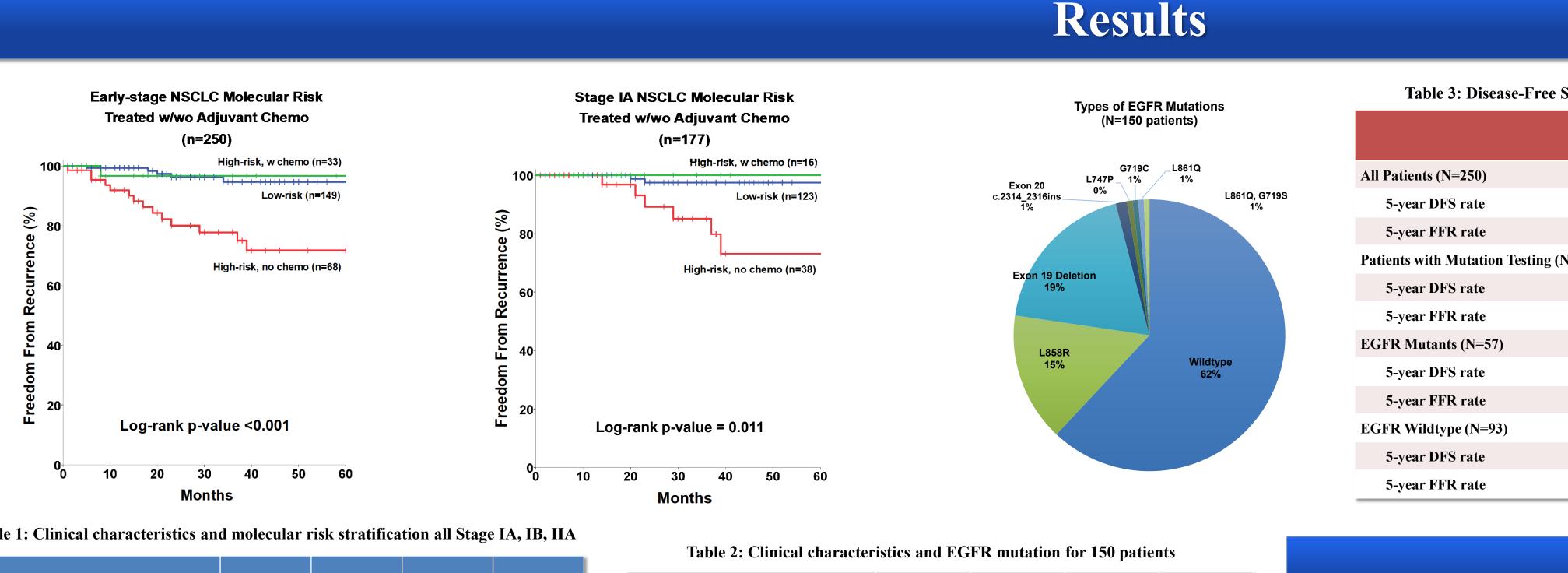
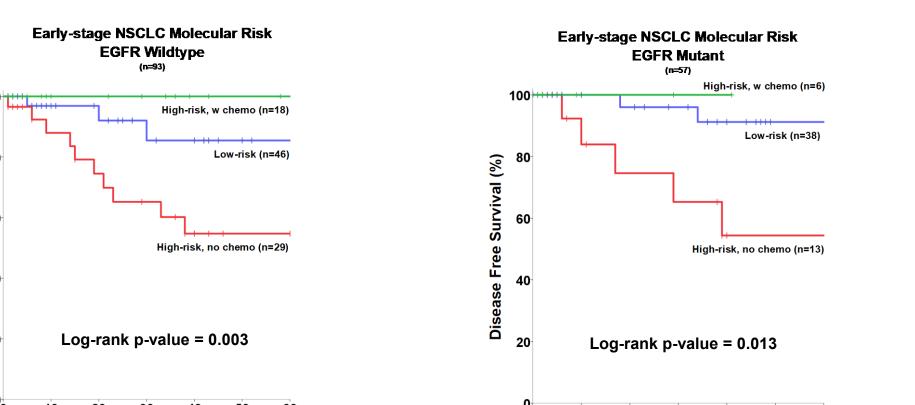
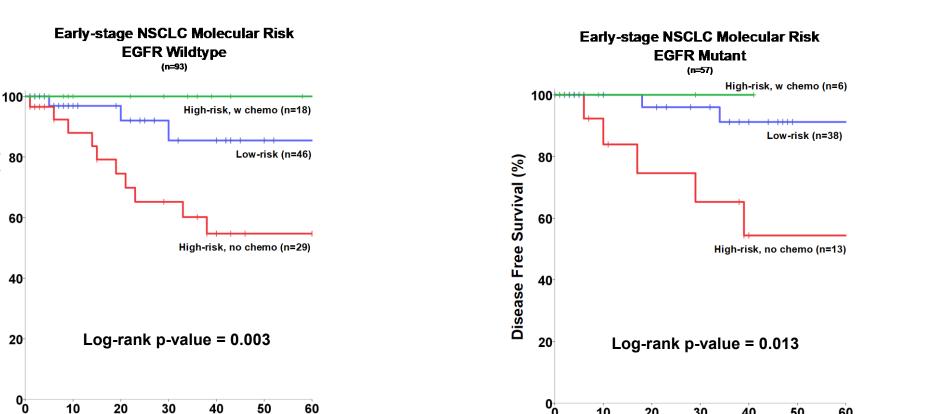




Table 1: Clinical characteristics and molecular risk stratification all Stage IA, IB, IIA

					Table	2. Chincar charact	2. Chinear characteristics and 10	2. Chinear characteristics and EOT K mutation	2: Chinical characteristics and EGFK initiation for 150 patien
	All Patients	Molecular Low Risk	Molecular High Risk	P-value			All Patients (n=150)	wildtyne	All Patients wildtype EGFR mutants (n=150)
Number of Patients	250	149 (60%)	101 (40%)				150		
Mean Age (years ± SE)	68.5 ± 0.6	68.8 ± 0.8	68.1 ± 1.0	0.5991	Number of Patients		150		
Sex				0.2301	Mean Age (years \pm SE)		67.8 ± 0.8	67.8 ± 0.8 68.9 ± 1.1	$67.8 \pm 0.8 \qquad 68.9 \pm 1.1 \qquad 66.3 \pm 1.3$
Men	88 (35%)	48 (32%)	40 (40%)		Sex				
Women	162 (65%)	101 (68%)	61 (60%)		Men		45 (30%)		
				0.0075	Women		105 (70%)	105 (70%) 67 (72%)	105 (70%) 67 (72%) 38 (67%)
Asian	46 (18%)	27 (18%)	19 (19%)	0.8875	Asian		29 (19%)	29 (19%) 7 (8%)	29 (19%) 7 (8%) 22 (39%)
History of smoking	162 (65%)	89 (60%)	73 (72%)	0.0416	History of smoking		95 (63%)	95 (63%) 71 (76%)	95 (63%) 71 (76%) 24 (42%)
Pathologic Stage				<0.0001	Pathologic Stage				
Stage IA	177 (71%)	123 (83%)	54 (53%)		Stage IA		101 (67%)	101 (67%) 62 (67%)	101 (67%) 62 (67%) 39 (68%)
Stage IB	52 (21%)	17 (11%)	35 (35%)		Stage IB		34 (23%)	34 (23%) 20 (22%)	34 (23%) 20 (22%) 14 (25%)
Stage IIA	21 (10%)	9 (6%)	12 (12%)		Stage IIA	15	(10%)	(10%) 11 (12%)	(10%) 11 (12%) 4 (7%)
EGFR Mutation Status*				0.0288	Molecular Risk				
EGFR Wildtype	93 (62%)	45 (54%)	48 (72%)		Low-risk	84 (56%)		46 (49%)	46 (49%) 38 (67%)
EGFR Mutation	57 (38%)	38 (46%)	19 (28%)		High-risk	66 (44%)		47 (51%)	47 (51%) 19 (33%)
Received adjuvant chemo	33 (13%)	0 (0%)	33 (33%)		Median follow up (months \pm SE)	30 ± 2.1		27 ± 2.7	27 ± 2.7 36 ± 3.3
Median follow up (months \pm SE)	29 ± 1.7	28 ± 2.0	33 ± 2.8	0.2028	5-year DFS rate	77.8%		75.9%	75.9% 80.6%

- stage IA.
- EGFR mutation status did not predict clinical outcomes and therefore is not expected to be an effective tool for identifying stage I-IIA patients in need of adjuvant intervention.
- The 14-Gene Assay is independent of EGFR mutation status, and effectively segregates high- and low-risk patients among those with both EGFR wildtype and mutant tumors.
- 65% of patient with an EGFR mutation were molecular low-risk and unlikely to recur; these patients would likely be overtreated with expensive, morbid, long-term TKI therapy
- Combining molecular risk stratification with EGFR mutation status to make treatment decisions may better inform adjuvant therapy recommendations, improve survival and limit treatmentrelated morbidity

1.	NCCN Non-Small Cell Lung Cancer Clinical p
2.	Herbst RS, Tsuboi M, John T, et al: Osimertini

- ADAURA. ASCO20 Virtual Scientific Program. Abstract LBA5. Kratz JR, He J, Van Den Eeden SK, et al. A practical molecular assay to predict survival in resected non-squamous, non-small-cell lung cancer: development and international
- validation studies. Lancet. Mar 3 2012;379(9818):823-832 Kratz JR, Van den Eeden SK, He J, Jablons DM, Mann MJ. A prognostic assay to identify patients at high risk of mortality despite small, node-negative lung tumors. JAMA. Oct 24 2012:308(16):1629-1631
- Kratz JR, Tham PT, Mulvihill MS, et al. Analytical validation of a practical molecular assay prognostic of survival in nonsquamous non-small cell lung cancer. Diagnostic molecular pathology : the American journal of surgical pathology, part B. Jun 2013;22(2):65-69.
- Woodard GA, Gubens MA, Jahan TM, et al. Prognostic molecular assay may improve identification of patients at risk for recurrence in early stage non-small-cell lung cancer. Clin
- Lung Cancer. 2014 Nov;15(6):426-32. Woodard GA, Wang SX, Kratz JR, et al. Adjuvant chemotherapy guided by molecular profiling and improved outcomes in early stage, non-small cell lung cancer. Clin Lung Cancer. 2018 Jan;19(1):58-64.

Survival and Freedom	From Recurrence	e based on molecul	lar risk and EGFR	mutation testing

				C
	Low-risk	High-risk no chemo	High-risk w chemo	Log-rank p-value
	88.0%	65.7%	96.7%	<0.001
	94.6%	71.7%	96.7%	<0.001
N=150)				
	88.5%	54.4%	100%	<0.001
	91.1%	60.7%	100%	<0.001
	91.2%	54.4%	100%	0.013
	91.2%	54.4%	100%	0.043
	85.5%	54.7%	100%	0.003
	92.0%	65.2%	100%	0.009

Conclusions

In this 250-patient prospective cohort, Molecular High Risk in early-stage non-squamous NSCLC patients (defined as receiving either a 14-Gene high- or intermediate-risk score) was predictive of improved freedom from recurrence and disease-free survival with adjuvant chemotherapy, even in

References

oractice guidelines. Version 4.2017. http://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf. inib as adjuvant therapy in patients with stage IB-IIIA EGFR mutation positive NSCLC after complete tumor resection: